Что входит в оптическую систему глаза — функции и заболевания

Оптическая система глаза

Оптическая система глаза состоит из роговицы, водянистой влаги, хрусталика и стекловидного тела. Преломление света в глазе происходит, главным образом, на роговице и поверхностях хрусталика.

Свет от наблюдаемого предмета проходит через оптическую систему глаза и фокусируется на сетчатке, образуя на ней обратное и уменьшенное изображение (мозг «переворачивает» обратное изображение, и оно воспринимается как прямое).

Показатель преломления стекловидного тела больше единицы, поэтому фокусные расстояния глаза во внешнем пространстве (переднее фокусное расстояние) и внутри глаза (заднее фокусное расстояние) неодинаковы.

Оптическая сила глаза (в диоптриях) вычисляется как обратное заднее фокусное расстояние глаза, выраженное в метрах. Оптическая сила глаза зависит от того, находится ли он в состоянии покоя (58 диоптрий для нормального глаза) или в состоянии наибольшей аккомодации (70 диоптрий).

Аккомодация — это способность глаза четко различать предметы, находящиеся на разных расстояниях. Аккомодация происходит за счет изменения кривизны хрусталика при натяжении или расслаблении мышц ресничного тела.

Когда ресничное тело натянуто, хрусталик растягивается, и его радиусы кривизны увеличиваются. При уменьшении натяжения мышцы кривизна хрусталика увеличивается под действием упругих сил.

В свободном, ненапряженном состоянии нормального глаза на сетчатке получаются ясные изображения бесконечно удаленных предметов, а при наибольшей аккомодации видны самые близкие предметы.

Положение предмета, при котором создается резкое изображение на сетчатке для ненапряженного глаза, называют дальней точкой глаза.

Положение предмета, при котором создается резкое изображение на сетчатке при наибольшем возможном напряжении глаза, называют ближней точкой глаза.

При аккомодации глаза на бесконечность задний фокус совпадает с сетчаткой. При наибольшем напряжении на сетчатке получается изображение предмета, находящегося на расстоянии около 9 см.

Разность обратных величин расстояний между ближней и дальней точкой называют диапазоном аккомодации глаза (измеряется в диоптриях).

С возрастом способность глаза к аккомодации уменьшается. В возрасте 20 лет для среднего глаза ближняя точка находится на расстоянии около 10 см (диапазон аккомодации 10 диоптрий), в 50 лет ближняя точка располагается на расстоянии уже около 40 см (диапазон аккомодации 2,5 диоптрии), а к 60 годам уходит на бесконечность, то есть аккомодация прекращается.

Это явление называется возрастной дальнозоркостью или пресбиопией.

Расстояние наилучшего зрения — это расстояние, на котором нормальный глаз испытывает наименьшее напряжение при рассматривании деталей предмета. При нормальном зрении оно составляет в среднем 25–30 см.

Приспособление глаза к изменившимся условиям освещенности называется адаптацией. Адаптация происходит за счет изменения диаметра отверстия зрачка, перемещения черного пигмента в слоях сетчатки и различной реакцией на свет палочек и колбочек. Сокращение зрачка происходит за 5 секунд, а его полное расширение — за 5 минут.

Темновая адаптация происходит при переходе от больших яркостей к малым. При ярком свете работают колбочки, палочки же «ослеплены», родопсин выцвел, черный пигмент проник в сетчатку, заслоняя колбочки от света.

При резком снижении яркости отверстие зрачка раскрывается, пропуская больший световой поток. Затем из сетчатки уходит черный пигмент, родопсин восстанавливается, и когда его становится достаточно, начинают функционировать палочки.

Мнение эксперта
Давыдова Людмила Сергеевна
Терапевт с 13-летним стажем. Специализируется на диагностике, профилактике и лечении внутренних болезней терапевтического и гастроэнтерологического профиля в рамках клиники
Так как колбочки не чувствительны к слабым яркостям, то сначала глаз ничего не различает. Чувствительность глаза достигает максимального значения через 50–60 минут пребывания в темноте.

Световая адаптация — это процесс приспособления глаза при переходе от малых яркостей к большим. Сначала палочки сильно раздражены, «ослеплены» из-за быстрого разложения родопсина.

Колбочки, не защищенные еще зернами черного пигмента, также раздражены слишком сильно. Через 8–10 минут чувство ослепления прекращается, и глаз снова видит.

Поле зрения глаза достаточно широкое (125 градусов по вертикали и 150 градусов по горизонтали), но для ясного различения используется только его малая часть. Поле наиболее совершенного зрения (соответствующее центральной ямке) — около 1–1,5°, удовлетворительного (в области всего желтого пятна) — около 8° по горизонтали и 6° по вертикали.

Вся остальная часть поля зрения служит для грубого ориентирования в пространстве. Для обозрения окружающего пространства глазу приходится совершать непрерывное вращательное движение в своей орбите в пределах 45–50°.

Это вращение приводит изображения различных предметов на центральную ямку и дает возможность рассмотреть их детально. Движения глаза совершаются без участия сознания и, как правило, не замечаются человеком.

Угловой предел разрешения глаза — это минимальный угол, при котором глаз наблюдает раздельно две светящиеся точки. Угловой предел разрешения глаза составляет около 1 минуты и зависит от контраста предметов, освещенности, диаметра зрачка и длины волны света.

Кроме того, предел разрешения увеличивается при удалении изображения от центральной ямки и при наличии дефектов зрения.

к содержанию ↑

Дефекты зрения и их коррекция

При нормальном зрении дальняя точка глаза бесконечно удалена. Это означает, что фокусное расстояние расслабленного глаза равно длине оси глаза, и изображение попадает точно на сетчатку в области центральной ямки.

Такой глаз хорошо различает предметы вдали, а при достаточной аккомодации — и вблизи.

Близорукость

При близорукости лучи от бесконечно удаленного предмета фокусируются перед сетчаткой, поэтому на сетчатке формируется размытое изображение.

Чаще всего это происходит из-за удлинения (деформации) глазного яблока. Реже близорукость возникает при нормальной длине глаза (около 24 мм) из-за слишком большой оптической силы оптической системы глаза (более 60 диоптрий).

В обоих случаях изображение от удаленных предметов находится внутри глаза, а не на сетчатке. На сетчатку попадает только фокус от близко расположенных к глазу предметов, то есть дальняя точка глаза находится на конечном расстоянии перед ним.

Близорукость корректируется при помощи отрицательных линз, которые строят изображение бесконечно удаленной точки в дальней точке глаза.

Близорукость чаще всего появляется в детском и подростковом возрасте, причем по мере роста глазного яблока в длину близорукость увеличивается. Истинной близорукости, как правило, предшествует так называемая ложная близорукость — следствие спазма аккомодации.

В этом случае можно восстановить нормальное зрение при помощи средств, расширяющих зрачок и снимающих напряжение ресничной мышцы.

к содержанию ↑

Дальнозоркость

При дальнозоркости лучи от бесконечно удаленного предмета фокусируются за сетчаткой.

Дальнозоркость вызывается слабой оптической силой глаза для данной длины глазного яблока: либо короткий глаз при нормальной оптической силе, либо малая оптическая сила глаза при нормальной длине.

Чтобы сфокусировать изображение на сетчатке, приходится все время напрягать мышцы ресничного тела. Чем ближе предметы к глазу, тем все дальше за сетчатку уходит их изображение и тем больше требуется усилий мышц глаза.

Дальняя точка дальнозоркого глаза находится за сетчаткой, т. е. в расслабленном состоянии он может четко увидеть лишь предмет, который находится позади него.

Конечно, поместить предмет за глаз нельзя, но можно спроецировать туда его изображение при помощи положительных линз.

Мнение эксперта
Давыдова Людмила Сергеевна
Терапевт с 13-летним стажем. Специализируется на диагностике, профилактике и лечении внутренних болезней терапевтического и гастроэнтерологического профиля в рамках клиники
При небольшой дальнозоркости зрение вдаль и вблизи хорошее, но могут быть жалобы на быструю утомляемость и головную боль при работе. При средней степени дальнозоркости зрение вдаль остается хорошим, а вблизи затруднено.

При высокой дальнозоркости плохим становится зрение и вдаль, и вблизи, так как исчерпаны все возможности глаза фокусировать на сетчатке изображение даже далеко расположенных предметов.

У новорожденного глаз немного сдавлен в горизонтальном направлении, поэтому у глаза есть небольшая дальнозоркость, которая проходит по мере роста глазного яблока.
к содержанию ↑

Аметропия

Аметропия (близорукость или дальнозоркость) глаза выражается в диоптриях как величина, обратная расстоянию от поверхности глаза до дальней точки, выраженной в метрах.

Оптическая сила линзы, необходимая для коррекции близорукости или дальнозоркости, зависит от расстояния от очков до глаза. Контактные линзы располагаются вплотную к глазу, поэтому их оптическая сила равна аметропии.

Например, если при близорукости дальняя точка находится перед глазом на расстоянии 50 см, то для ее исправления нужны контактные линзы с оптической силой в −2 диоптрии.

Слабая степень аметропии считается до 3 диоптрий, средняя — от 3 до 6 диоптрий и высокая степень — выше 6 диоптрий.

к содержанию ↑

2.1.1. Строение глаза

На рисунке 2.1. изображен разрез глазного яблокаи показаны основные детали глаза.

Рис. 2.1. Горизонтальный разрез правого глаза.

Тонкая сосудистая пластинка (радужная оболочка) является диафрагмой, ограничивающей проходящий пучок лучей. Через отверстие в радужной оболочке (зрачок) свет проникает в глаз. В зависимости от величины падающего светового потока диаметр зрачка может изменяется от 1 до 8 мм.

Помимо сосудов радужная оболочка содержит большое количество пигментных клеток, в зависимости от их содержания и глубины залегания радужная оболочка имеет различный цвет. Когда в радужной оболочке нет никакого цветного вещества, то она кажется красной от крови, заключенной в пронизывающих ее кровеносных сосудах.

В этом случае глаза плохо защищены от света и иногда страдают светобоязнью (альбинизмом), но в темноте превосходят по остроте зрения глаза с темной окраской.

Хрусталик представляет собой двояковыпуклую эластичную линзу, которая крепится на мышцах ресничного тела. Ресничное тело обеспечивает изменение формы хрусталика.

Мнение эксперта
Давыдова Людмила Сергеевна
Терапевт с 13-летним стажем. Специализируется на диагностике, профилактике и лечении внутренних болезней терапевтического и гастроэнтерологического профиля в рамках клиники
Хрусталик разделяет внутреннюю поверхность глаза на две камеры: переднюю камеру, заполненную водянистой влагой, и заднюю камеру, заполненную стекловидным телом.

Внутренняя поверхность задней камеры покрыта сетчаткой, представляющей собой светочувствительный слой. Получаемое светочувствительными элементами сетчатки раздражение передается волокнам зрительного нерва и по ним достигает зрительных центров мозга.

Между сетчаткой и склерой находится тонкая сосудистая оболочка, состоящая из сети кровеносных сосудов, питающих глаз.

Место входа зрительного нерва представляет собой слепое пятно. Немного выше расположено желтое пятно – участок наиболее ясного видения. Линия, проходящая через центр желтого пятна и центр хрусталика, называется зрительной осью. Она отклонена от оптической оси глаза на угол около 5°.

к содержанию ↑

2.1.2. Упрощенная оптическая схема глаза

Поток излучения, отраженный от наблюдаемого предмета, проходит через оптическую систему глаза и фокусируется на внутренней поверхности глаза – сетчатой оболочке, образуя на ней обратное и уменьшенное изображение (мозг «переворачивает» обратное изображение, и оно воспринимается как прямое). Оптическую систему глаза составляют роговица, водянистая влага, хрусталик и стекловидное тело (рис.

2.2). Особенностью этой системы является то, что последняя среда, проходимая светом непосредственно перед образованием изображения на сетчатке, обладает показателем преломления, отличным от единицы.

Вследствие этого фокусные расстояния оптической системы глаза во внешнем пространстве (переднее фокусное расстояние) и внутри глаза (заднее фокусное расстояние) неодинаковы.

Рис. 2.2. Оптическая система глаза.

Преломление света в глазе происходит главным образом на его внешней поверхности – роговой оболочке, или роговице, а также на поверхностях хрусталика. Радужная оболочка определяет диаметр зрачка, величина которого может изменяться непроизвольным мышечным усилием от 1 до 8 мм.

Оптическая система глаза чрезвычайно сложна, поэтому при расчетах хода лучей обычно пользуются упрощенными, эквивалентными истинному глазу «схематическими глазами». В таблице 2.1 приведены данные для аккомодированного и не аккомодированного глаза.

В состоянии покоя В состоянии наибольшей аккомодации
пов-ти радиус
кривизны
осевое
расстояние
показатель
преломления
радиус
кривизны
осевое
расстояние
показатель
преломления
1 7,7 0,5 1,376 7,7 0,5 1,376
2 6,8 3,1 1,336 6,8 2,7 1,336
3 10,0 3,6 1,386 5,33 4,0 1,386
4 -6,0 15 1,336 -5,33 15 1,336
Оптическая сила Оптическая сила

Таблица 2.1. Данные «схематического глаза».

Оптическая сила глаза вычисляется как обратное фокусное расстояние:

, (2.1)

где – заднее фокусное расстояние глаза, выраженное в метрах.

к содержанию ↑

2.1.3. Аккомодация

Аккомодация – это способность глаза приспосабливаться к четкому различению предметов, расположенных на разных расстояниях от глаза.

Аккомодация происходит путем изменения кривизны поверхностей хрусталика при помощи натяжения или расслабления ресничного тела. Когда ресничное тело натянуто, хрусталик растягивается и его радиусы кривизны увеличиваются. При уменьшении натяжения мышцы хрусталик под действием упругих сил увеличивает свою кривизну.

В свободном, ненапряженном состоянии нормального глаза на сетчатке получаются ясные изображения бесконечно удаленных предметов, а при наибольшей аккомодации видны самые близкие предметы.

Положение предмета, при котором создается резкое изображение на сетчатке для ненапряженного глаза, называют дальней точкой глаза.

Положение предмета, при котором создается резкое изображение на сетчатке при наибольшем возможном напряжении глаза, называют ближней точкой глаза.

При аккомодации глаза на бесконечность задний фокус совпадает с сетчаткой. При наибольшем напряжении на сетчатке получается изображение предмета, находящегося на расстоянии около 9 см (рис. 2.4).

а) дальняя точка

б) ближняя точка
Рис. 2.4. Изображение ближней и дальней точки.

Разность обратных величин расстояний между ближней и дальней точкой называют диапазоном аккомодации глаза (измеряется в дптр).

С возрастом способность глаза к аккомодации постепенно уменьшается. Скажем, в возрасте 20 лет для среднего глаза ближняя точка находится на расстоянии около 10 см (диапазон аккомодации 10 дптр), в 50 лет ближняя точка располагается на расстоянии уже около 40 см (диапазон аккомодации 2.5 дптр), а к 60 годам уходит на бесконечность, то есть аккомодация прекращается.

Это явление называется возрастной дальнозоркостью или пресбиопией.

Расстояние наилучшего зрения – это расстояние, на котором нормальный глаз испытывает наименьшее напряжение при рассматривании деталей предмета.

С точки зрения физической оптики, человеческий глаз относят к центрированным оптическим системам, для которых характерно наличие 2-х и более линз, которые имеют одну общую главную оптическую ось.

Оптическая система глаза — это оптический аппарат глаза, в который входят живые линзы (хрусталик и роговица, между которыми находится диафрагма), стекловидное тело и водянистая влага. К ней также относят и слезную жидкость, обеспечивающую прозрачность роговой оболочки.

Основные преломляющие поверхности данной системы – это обе поверхности хрусталика и передняя поверхность роговицы. Функция остальных сред, главным образом, состоит в проведении света.

Глаз воспринимает рассматриваемые предметы внешнего мира, анализируя их изображения на сетчатке. В функциональном отношении глаз делится на 2-а ключевых отдела: световоспринимающий и светопроводящий.

К светопроводящему отделу относятся прозрачные среды глаза: роговая оболочка, влага передней камеры, стекловидное тело и хрусталик. Световоспринимающий отдел – это сетчатка. При помощи оптической системы светопроводящих сред изображение предметов воспроизводится на сетчатке.

Отражаясь от рассматриваемых предметов, лучи света проходят через 4-ре преломляющие поверхности: заднюю и переднюю поверхности роговой оболочки, заднюю и переднюю поверхности хрусталика. Проходя через каждую из них, луч отклоняется от первоначального направления, в итоге в фокусе оптической системы мы получаем реальное, но перевернутое на 180 градусов, изображение предмета, на который смотрим.

Существует такое понятия, как рефракция, означающее преломление света в оптической системе.

Оптическая ось глаза – это прямая линия, которая проходит через центры кривизны каждой из преломляющих поверхностей. Лучи света, которые падают параллельно данной оси, после преломления соединяются вместе в главном фокусе системы.

Мнение эксперта
Давыдова Людмила Сергеевна
Терапевт с 13-летним стажем. Специализируется на диагностике, профилактике и лечении внутренних болезней терапевтического и гастроэнтерологического профиля в рамках клиники
От бесконечно удаленных предметов идут параллельные лучи, а главным фокусом оптической системы является место на продолжении оптической оси, в котором образуется изображение предметов, которые бесконечно удалены.

Расходящиеся лучи, которые идут от предметов, находящихся на любом конкретном расстоянии, будут собираться в дополнительных фокусах. Расположены они будут дальше, чем главный фокус, поскольку для фокусировки расходящихся лучей нужна дополнительная преломляющая сила, и чем сильнее расхождение падающих лучей, тем она должна быть больше, т.

е. она возрастает при приближении источника этих лучей.

Расстояние между главной плоскостью и главным фокусом – это главное фокусное расстояние оптической системы.

Оптическая сила системы зависит от фокусного расстояния. Чем оно короче, тем сильнее преломляет система. Оптическая сила линз измеряется при помощи величины, которая является обратной фокусному расстоянию, называемой диоптрией.

Одна диоптрия (дптр) – это преломляющая сила линзы при фокусном расстоянии один метр. Узнав фокусное расстояние линзы, можно определить ее рефракцию.

Чтоб полностью охарактеризовать оптическую систему глаза, нужно узнать радиусы кривизны, как передней, так и задней поверхностей роговой оболочки и хрусталика, а также толщину хрусталика и роговицы, определить длину анатомической оси глаза, глубину передней камеры и ключевые показатели преломления прозрачных сред.

Измерить вышеописанные величины можно разными методами, которые делятся на 3-и группы: оптические, ультразвуковой и рентгенологический. Оптические методы позволяют измерить отдельные элементы преломляющего аппарата, и определить длину оси путем вычислений.

Ультразвуковой и рентгенологический методы дают возможность непосредственно измерить точную длину оси глаза.

Орган зрения, в функциональном отношении, подразделяется на светопроводящий и световоспринимающий отделы. Светопроводящий отдел включает прозрачные среды органа зрения — хрусталик, роговицу, влагу передней камеры, а также стекловидного тела.

Сетчатка глаза является световоспринимающим отделом. Изображение любого из окружающих нас предметов оказываются на сетчатке пройдя оптическую систему глаза.

Луч света, отраженный от рассматриваемого предмета, проходит 4 преломляющие поверхности. Это поверхности роговицы (задняя и передняя), а также поверхности хрусталика (задняя и передняя).

Каждая такая поверхность несколько отклоняет луч от его начального направления, собственно поэтому на конечном этапе зрительного пути — в фокусе появляется перевернутое, но реальное изображение наблюдаемого предмета.

к содержанию ↑

Путь световых лучей и величины

Мнение эксперта
Давыдова Людмила Сергеевна
Терапевт с 13-летним стажем. Специализируется на диагностике, профилактике и лечении внутренних болезней терапевтического и гастроэнтерологического профиля в рамках клиники
Преломление света в средах глазной оптической системы носит название процесса рефракции. Учение о рефракции основано на законах оптики, дающих характеристики распространению световых лучей в различных средах.

Оптической осью глаза принято называть прямую линию, проходящую через центральные точки всех преломляющих поверхностей. Световые лучи, которые падают параллельно данной оси, преломляются и сходятся в основном фокусе зрительной системы.

Лучи эти отражены от бесконечно удаленных объектов, поэтому, главным фокусом оптической системы, принято называть точку оптической оси, где возникают изображения бесконечно удаленных объектов.

Световые лучи, отраженные от предметов, находящихся на конечных расстояниях, сходятся в дополнительных фокусах. Дополнительные фокусы локализуются дальше основного, ведь фокусировка расходящихся лучей происходит с применением дополнительной преломляющей силы.

При этом, чем сильнее расходятся лучи (чем ближе линза к источнику данных лучей), тем большая сила преломления необходима.

Основными характеристиками оптической системы глаза, принято считать: радиус кривизны поверхностей хрусталика и поверхностейроговицы, длину оси глаза, глубину передней камеры, показатели толщины хрусталика и роговицы, а также индекс преломления прозрачных сред.

Измерение данных величин (кроме данных преломления) выполняются с помощью методов офтальмологического обследования: ультразвуковых, оптических и рентгенологических. Ультразвуковые и рентгенологические исследования позволяют выявить длину оси глаза.

Посредством оптических методов проводят измерение составляющих преломляющего аппарата, длина оси определяется путем вычислений.

В связи с широким распространением оптико-реконструктивной микрохирургии: лазерной коррекции зрения ( Lasik либо кератомилез, оптической кератотомии, имплантаций искусственного хрусталика, кератопротезирования), расчеты элементов оптической системы глаза необходимы в работе офтальмохирургов.

к содержанию ↑

Роговица

Рефракция глаза и оптическая система начинаются с роговицы, которая является преломляющей линзой, выполняющей, помимо основных функций, защитные. Строение органа можно сравнивать с фотоаппаратом.

В данном случае роговица – это его объектив. Световые пучки на ее передней поверхности преломляются.

Роговицу, при подробном рассмотрении, составляет пять слоев, что способствует поддержанию уровня ее прозрачности. Здоровая линза — круглая, блестящая, видимых кровеносных сосудов на ней не должно наблюдаться.
к содержанию ↑

Камерная влага

Оптическая система глаз включает в себя важную биологическую среду — влагу. Это вязкая бесцветная жидкость, заполняющая заднюю и переднюю глазные камеры.

Каждый день вырабатывается новая порция такой жидкости, а отработанный объем через шлеммов канал поступает в кровоток, после чего выводится из организма. Камерная влага, кроме преломляющей функции, имеет еще и питательную, способствующую насыщению всех элементов глаза аминокислотами.

Затрудненный выход ее из камеры влечет возникновение глаукомы.

к содержанию ↑

Хрусталик глаза

Оптическая система глаз снабжена преломляющим элементом, выполняющим функцию рефракции, – это хрусталик. Его часто рассматривают как самостоятельный орган, довольно сложный по строению и очень важный по функциям.

Хрусталик глаза является полутвердой субстанцией без сосудов. Он располагается сразу за радужной оболочкой и передает четкое отображение увиденной картинки в рамки желтого пятна на сетчатку.

Содержит несколько слоев и капсульную сумку, которая может утолщаться и провоцировать помутнение.

к содержанию ↑

Стекловидное тело

В оптическую систему глаза входит стекловидное тело, которое ее фактически замыкает. Оно обладает множеством важных функций. Его наличие позволяет лучу проходить путь от хрусталика, который локализуется в вязкой жидкости тела, к сетчатке. Не все воспринимают глаз как оптическую систему.

Оптические приборы, вооружающие глаз

Человеческий глаз, несмотря на природное совершенство, по своим свойствам далек от идеальных универсальных оптических приборов. Поэтому необходимо использовать оптику, вооружающую человеческий глаз новыми способностями.

При рассмотрении различных приборов следует помнить, что в каждом случае они и орган зрения образуют единую оптическую систему, важнейшим элементом которой считается хрусталик.

Мнение эксперта
Давыдова Людмила Сергеевна
Терапевт с 13-летним стажем. Специализируется на диагностике, профилактике и лечении внутренних болезней терапевтического и гастроэнтерологического профиля в рамках клиники
Если говорить о глазе как об оптическом приборе в физике, он в целом помогает получить изображение того или иного предмета на сетчатке, и кажущаяся его величина оценивается человеком по величине этого изображения.

Особенностью оптической системы, которая включает в свой состав глаза, является то, что параметры такой системы могут изменяться благодаря изменению фокусного расстояния хрусталика при аккомодации. Подобные соображения позволяют с легкостью изучить действие увеличительной лупы, которая представляет собой обычную выпуклую линзу.

Такими же, только более сложными по строению и функционированию приборами являются микроскоп, телескоп и т. д.

к содержанию ↑

Преломление света

Главными преломляющими средами человеческого глаза являются роговица, которая обладает наивысшей преломляющей силой, и хрусталик, представляющий двояковыпуклую линзу. Преломление света в глазу проходит по основным законам, которые изучает физика.

Лучи, проходящие через центр хрусталика и роговицы (т. е.

через главную глазную оптическую ось) перпендикулярно к их поверхности, преломления не испытывают. Остальные преломляются и внутри камеры глаза сходятся в единой точке – фокусе.

Такой ход световых лучей обеспечивает на сетчатке четкое изображение, причем оно получается обратным и уменьшенным.

Показатель преломления света в стекловидном теле больше единицы, поэтому фокусные расстояния во внешнем пространстве (переднее фокусное расстояние) и внутри (заднее) не могут быть одинаковы. Оптическая сила рассчитывается в виде обратного заднего фокусного расстояния глаза, выраженного в метрах.

Она зависит от того, в состоянии покоя находится орган зрения или в состоянии аккомодации. Аккомодация — это способность четко различать предметы, которые находятся на разных расстояниях.

к содержанию ↑

Основы оптики

Вспомним школьную программу по физике. Многие преподаватели демонстрировали ученикам занимательный фокус: два помещения со слабым уровнем освещенности, но одно из них имеет небольшие отверстия в стенах.

За ними размещен сильный источник света, например, солнышко. В некоторых случаях вместо точечных отверстий, использующихся для освещения комнаты, применяли небольшой фонарик.

Если между точечным источником света и вторым отверстием в стене поместить предмет из непрозрачного материала, то на перегородке, расположенной за вторым отверстием появится его изображение, перевернутое на сто восемьдесят градусов.

Подобный фокус со световыми лучами проделывает собирательная линза. Причина кроется в том, что каждая микроскопическая точка любого объекта при освещении, сама становится источником света, отражая во все стороны, попавшие на неё частицы.

Белые изделия практически ничего не поглощают из видимого диапазона, весь попавший на них свет они отражают в окружающую среду. Чёрные предметы, наоборот, любой источник энергии используют для нагрева.
к содержанию ↑

Передняя камера

Мнение эксперта
Давыдова Людмила Сергеевна
Терапевт с 13-летним стажем. Специализируется на диагностике, профилактике и лечении внутренних болезней терапевтического и гастроэнтерологического профиля в рамках клиники
На 98% состоит из внутриглазной жидкости. Обеспечивает степень преломления равную 1,33 D. При наличии отклонения в работе органа зрения корректируются углубления камеры, в итоге на каждый миллиметр происходит повышение преломления на 1 D.
к содержанию ↑

Радужка и зрачок

Мышечные волокна радужной оболочки отвечают за изменение размера зрачков, т.е. регулируют какое количество света проходит через оптическую систему.

В условиях хорошего освещения они сужены, в итоге прямые лучи попадают непосредственно на центральную ямку. В этом случае, как правило, повышается острота зрения у людей, страдающих от астигматизма.

Если при сужении зрачков появляются проблемы с глазами, то можно говорить о патологических процессах в макуле.

В условиях слабой освещенности зрачки увеличиваются в размерах, это приводит к следующим эффектам:

  • Оптическая система получает большее количество световых потоков, в итоге острота зрения повышается, и человек может различать предметы даже в темноте;
  • На значительную часть поверхности сетчатой оболочки попадают прямые лучи, т.е. в процесс вовлекаются фоторецепторы.
При сильных эмоциональных потрясениях оптическая система теряет возможность саморегуляции. Подобная реакция наблюдается при приеме определенной группы медикаментов или наркотических веществ. В этом случае страдает зрение.

При сильном расширении зрачков у людей с диагнозом «астигматизм» изображение получается размытым, поскольку в процесс вовлекаются участки роговой оболочки, имеющие разную степень преломляемости.
Вернуться к оглавлению

к содержанию ↑

Сетчатка

Один из самых сложных элементов в зрительном аппарате. Именно она отвечает за восприятие цвета и света.

Обладает высокой чувствительностью, покрыта тончайшей плёнкой. Поддерживают сетчатую оболочку эпителиальные связки, а стекловидное тело прижимает её.

Оптическая система использует элемент для фиксации картинки и передачи информации по зрительным нервам в соответствующие отделы головного мозга.

Подробней о строении системы вы узнаете из видеоролика

к содержанию ↑

Заболевания

Выделяют несколько недугов, затрагивающих оптическую систему глаз:

  • Астигматизм;
  • Близорукость;
  • Косоглазие;
  • Дальнозоркость;
  • Кератоконус (истончение роговой оболочки);
  • Астенопия (повышенная утомляемость органа зрения).

Чудеса зрения в природе

Уникальными глазами обладают змеи, способные воспринимать инфракрасное излучение. Благодаря этой способности они с успехом охотятся на теплокровных животных даже в условиях нулевой освещенности.

У бабочек имеется иная особенность, чудесные создания воспринимают часть ультрафиолетового сектора, поэтому им не составляет труда обнаружить пыльцу в цветках.

Великолепным ночным зрением славятся гекконы. Причем они видят в том же спектральном диапазоне, что и люди. Просто их сетчатая оболочка в триста пятьдесят раз чувствительней к световым лучам. Настоящий прибор ночного видения!

Отдельного внимания заслуживает хамелеон. Ему не нужно поворачивать голову, что обозреть все триста шестьдесят градусов окружающей среды. Измерить дистанцию до объекта он способен одним глазом.

Самыми большими глазами на всей планете может похвастаться гигантский кальмар. Он обитает в пучине океана, на самом его дне. Здесь практически никогда не бывает солнечного света, но при этом моллюск способен рассмотреть своего врага на расстоянии тысяча метров.

Автор статьи
Давыдова Людмила Сергеевна
Терапевт с 13-летним стажем. Специализируется на диагностике, профилактике и лечении внутренних болезней терапевтического и гастроэнтерологического профиля в рамках клиники
Следующая
ЛечениеОстрота зрения: норма, диагностика, нарушения

Добавить комментарий